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PREDIKCIJA PROIZVODNJE ELEKTRIČNE ENERGIJE U 

ELEKTROENERGETSKOM SISTEMU 

FORECASTING ELECTRICITY PRODUCTION IN THE POWER SYSTEM 

Matija Rogić,  Mileta Žarković* 

Kratak sadržaj: Potrošnja električne energije zavisi prevashodno od potrošača a prozivodnja 

se vrši u elektranama koje ne mogu u realnom vremenu da isprate promenu potrošnje. Kako se 

električna energija ne može efikasno skladištiti, neophodno je unapred poznavati potrebe i 

navike potrošača. Obnovljivi izvori moraju maksimalno figurisati u prozivodnji energije a 

vremenske prilike od kojih zavise su slabo predvidive i sklone naglim promenama. Budući da 

i proizvodnja i potrošnja zavise od nebrojeno uticaja, neophodno je koristiti neuralnu mrežu za 

predikciju kako bi se uvrstili doprinosi svih faktora. Različite arhitekture su se pokazale uspešno 

u predikciji, naglašavajući rezličite kvalitete. MLP je dobra osnova u svojoj jednostavnosti. 

Rekurentne mreže poput LSTM-a su prirodan alat za predikciju vremenski poređanih podataka. 

Konvolucione mreže i Autoenkoderi briljiraju zbog svoje efikasnosti. Transformeri zbog 

mehanizma usmerene pažnje (attention) i velikog kapaciteta, mogu da obrade i izvuku zakljuške 

iz ogromne količine podataka. Moguće su i hibridne arhitekture sačinjene od više različitih 

gradivnih blokova. U ovom radu je predstavljena primena neuralne mreže TiDE (Time-series 

Dense Encoder) za predikciju proizvodnje i potrošnje električne energije u Srbiji na realnim 

podacima iz prve polovine 2019. godine. Uz to su korišćeni i meteorološki podaci RHMZ-a za 

isti period. Predikcija je vršena sedam dana unapred sa učestanošću od jedan sat. 

Ključne reči: elektroenergetski sistem, predikcija, prozivodnja, neuralne mreže, Autoenkoder 

Abstract: Variable ambient conditions have a dominant influence on electricity consumption. 

Renewable energy sources are increasingly present in electricity generation, and the weather 

conditions on which they depend are prone to sudden changes and can be predicted with a 

certain degree of accuracy. 

Since both generation and consumption depend on a large number of factors, it is desirable to 

use a neural network from the domain of artificial intelligence for forecasting so that the 

contributions of all these factors are included. Different neural network architectures have 

proven successful in forecasting, each emphasizing different qualities. The application of 

multilayer perceptron (MLP) neural networks is a good option due to its simplicity. Recurrent 

neural networks such as Long Short-Term Memory (LSTM) are a natural tool for predicting 

time-series data. Convolutional networks and autoencoders have an advantage over other 

 
* Matija Rogić, wingman.ai, matija.roga@gmail.com 

Mileta Žarković, Univerzitet u Beogradu -Elektrotehnički fakultet, mileta@etf.rs 

 

https://doi.org/10.46793/CIGRE37.D2.04


 

 

architectures due to their efficiency. Transformers, thanks to the attention mechanism and their 

large capacity, can process and derive insights from vast amounts of data. It is also possible to 

use hybrid architectures composed of various building blocks. 

This paper presents the application of the TiDE (Time-series Dense Encoder) neural network 

for forecasting electricity generation and consumption in Serbia based on real data from the 

first half of 2019. Additionally, meteorological data from the Republic Hydrometeorological 

Service of Serbia (RHMZ) for the same period were used. The forecast was carried out seven 

days in advance with an hourly resolution. The paper describes the algorithm for applying the 

TiDE neural network and the resulting errors in the time-series forecasts. 

Keywords: power system, forecasting, generation, neural networks, autoencoder 

1 INTRODUCTION 

In recent years, there has been a lot of advancement in long-term time-series forecasting, 

namely new neural network architectures specifically designed to tackle such problems. 

Interestingly,  many completely disparate solutions have achieved state-of-the-art (SoTA) 

which shows that there are many ways to achieve energy production and consumption 

forecasting and that the results depend on both the neural network and the data itself. 

In this work we present a method of training a neural network, Time Series Dense Encoder, 

TiDE [1] on electricity production from different sources as well as consumption whilst 

utilising reversible instance normalization, RevIn [2]. Same method is applied to two datasets, 

first being data from 2019 in Serbia and second containing only renewable energy production 

and total consumption from 2020. 

2 BACKGROUND 

Recurrent neural networks are well suited for time-series forecasting. Nonetheless several 

factors need to be taken into account, as they mostly process the data sequentially. Long horizon 

and even longer look-back make the use of recurrent networks such as LSTM inefficient and 

additional techniques need to be implemented in order to preserve information about periodicity 

of the data. Example of a modern neural network for time-series prediction based on recurrent 

architecture is DeepAR [9]. 

Transformer neural networks are well suited for large quantities of information and are able to 

find relations in seemingly unconnected data. This is mostly achieved through a mechanism 

called self-attention, the main idea being that each individual data point is observed in the 

context of its peers [8]. This gives transformers another benefit of having more explicit memory 

than the feed-forward or even recurrent networks. Main weakness of the transformers is 

difficulty of training which consists of both low efficiency and tendency to overfit. Some of the 

most notable transformer architectures today are Informer [3], FedFormer [4], AutoFormer [5],  

PatchTST [6],  Temporal Fusion Transformer [7]. 

Another equally viable option are architectures based on a simple feed-forward network. While 

transformers certainly have some benefits, other, simpler and more efficient networks may 

achieve better results on some forecasting problems. That observation is demonstrated in the 

work: "Are Transformers Effective for Time Series Forecasting?" [10]. Recently a few works 

have sparked new research in this direction, N-BEATS [11] and hierarchical version N-HiTS 



 

 

[12] in particular. It would be beneficial to compare results from a network from this category 

for example TSMixer [13] with results given in this work. 

Autoencoders are another popular option due to their efficiency, universality and excellent 

performance. Main idea is that input data is passed through a bottle-neck of sorts and the 

network is supposed to produce the same data on the output as is the input with as little loss of 

information as possible. That way, even unlabeled data can be used for training, since input and 

output data are the same. Internal representation which is often much lower dimensionality than 

the input data while preserving most of the information can be seen as a distilled down or 

compressed view of the data. This side effect is sometimes what is more important than the 

output itself. 

3 COVARIATES 

Electricity consumption, and therefore production, depend on many factors. The majority of the 

factories have some form of shift work, however automated the processes may be. Households 

vary their consumption depending on the time of day or the day of the week. Holidays represent 

special exceptions in consumption, and they are known in advance. Weather like severe frost 

or extreme drought also imply periods of increased electricity consumption. Weather changes 

in the environment have an impact on consumption in neighboring countries and therefore 

indirectly on the amount of exchange. Renewable sources are particularly vulnerable to weather 

conditions. Wind farms are used to the maximum when the wind is strong enough but within 

the permitted limits. It is necessary that the model for the prediction of production and 

consumption takes into consideration covariate variables. 

Correlated variables or covariates can roughly be divided into past, future and static. Past 

covariates by definition are known only until the moment after which we make the prediction. 

Therefore, we use them as well as the data we operate on prediction, but their value in the future 

is of no importance to us. Measured values are the most common and the most obvious example 

of this category. Future covariates can also be some values for which we don't have exact data, 

for example the weather forecast, but they have a big impact on the outcome of the prediction, 

that is, in reality, weather conditions have a dominant influence on production from renewable 

sources. The group of static covariates includes holidays and fixed facts known in advance. 

4 TIME-SERIES DENSE ENCODER 

Given the complexity of the problem, we need a network that can get the most useful 

information out from all the data, either from sequences that are of interest to us for prediction 

or from variables that affect them. The architecture TiDE was chosen, which attributes great 

importance to combining covariates with predicted sequences. 

In the first step, the neural network reduces the dimensionality of the input covariates. Then it 

merges that representation with static attributes and historical data. The data thus combined are 

then encoded in order to obtain an internal representation, that is, to extract the essence from 

the input data. 

The condensed data is further decoded to return to the form with original dimensions so that 

they could be concatenated together.The last step is the application of a time decoder to obtain 

the final sequence of predictions up to event horizon.  



 

 

In parallel with the described part of the network, there is a residual linear network connection 

that enables the propagation of historical data. This guarantees that the entire network does not 

miss any information in any way in the process of encoding and decoding.The residual block, 

which was used as a building element of the network, is shown on the right part of the picture. 

 

Figure 1. Overview of the TiDE neural network architecture1 

5 TRAINING 

The data were divided into sets for training, validation and test in the ratio of 80%, 10% and 

10% respectively. The prediction was made seven days in advance, i.e. the horizon is 168 steps 

in the future. Optimization of the learning rate (learning rate) was performed using a simple 

exponential decreasing method with a multiplier of 0.99. The early stopping method was used 

to avoid overfitting.  

The value was selected from the range of 0.9 to 0.999, based on multiple attempts. A value 

was chosen that does not reduce the precision of the results with a milder reference to the 

acceleration of the training itself. For the error function is the chosen method of mean square 

deviation, MSELoss. The technical implementation of the training was done using the darts 

library [14] which was built on to the popular pytorch library.  

 
1
 Time-series Dense Encoder, https://arxiv.org/pdf/2304.08424 

https://arxiv.org/pdf/2304.08424


 

 

6 REVERSIBLE INSTANCE NORMALIZATION (REV-IN) 

All data, when monitored in a sufficiently long interval, exhibit a distribution shift. In other 

words, the mean and variance are not constant. That makes it difficult in many ways to train the 

model and also makes the model imprecise. Reversible instance normalization was used as a 

solution to this problem. A simple but effective method that can be generally applied because 

uses two symmetric parts: the first for normalization by which the distribution of input data is 

translated into normal distribution and others for denormalization, which nullifies the effects of 

normalization and data distribution is returned back to its original form. The parameters of the 

transformation are variable and are adjusted in the process of training together with other 

weights of the network. 

Figure 2. Working principle of the RevIN method. Beta and gamma parameters are trained.2 

 

Figure 3. Graphic representation of normalization and denormalization using the RevIN 

method3. An example performed on well known datasets ETT4 and ECL5 

 
2
 Source: RevIn https://openreview.net/pdf?id=cGDAkQo1C0p 

3
 Source: RevIn https://openreview.net/pdf?id=cGDAkQo1C0p 

4
 Electricity Transformer Temperature, https://arxiv.org/abs/2012.07436 

5
 From Numbers to Words, https://arxiv.org/abs/2401.12652 

https://openreview.net/pdf?id=cGDAkQo1C0p
https://openreview.net/pdf?id=cGDAkQo1C0p
https://arxiv.org/abs/2012.07436
https://arxiv.org/abs/2401.12652


 

 

7 RESULTS 

Prediction was made 168 steps into the future, which in this particular case translates to seven 

days with one hour interval. The next few pictures show a graphical representation of the 

prediction. It is observed that the model grasps the periodicity of the signals, even when there 

is more than one frequency, on a daily and weekly basis. Sudden changes in amplitude are not 

fully covered by the prediction, but rather it follows historical values. Even the high-frequency 

component of the signal is mostly present. Simple limitation of the model output to positive 

values, for quantities that can not be negative, would improve the accuracy of the prediction. 

 

Figure 4. Prediction graphs for data from 2020 (left) and 2019(right) 

Table 1. Numerical errors of prediction for data from 2020 (up) and 2019(down) 

Prediction series  MAE MSE 

Production 0.074090 0.006416 

Wind 0.091468 0.020600 

Solar 0.156717 0.043977 

 

Prediction series  MAE MSE MAPE 

Hydro Power 0.082854 0.012151 21.85584 

Production 0.041335 0.002922 7.921187 

Consumption 0.037352 0.002148 6.132026 



 

 

8 CONCLUSION 

We presented an application of a state-of-the-art neural network on actual energy production 

and consumption data from Serbia. Although the results look promising, they leave some open 

questions. What additional trends could be seen if the data were collected in the period of 

several years or even decades? Would a higher sampling frequency reveal some phenomena 

that are otherwise masked? In addition to water levels in reservoirs and meteorological data, 

what other parameters (covariates) would be important for prediction? 

The idea for improving the used architecture is reflected in the fact that a tandem encoder-

decoder is symmetrical (three blocks were used, which gave the best results) and that each block 

encodes everything it compresses information more, reminiscent of the well-known U-Net 

image segmentation network [15]. Mentioned network has a direct connection at each level of 

the convolutional pyramid so that information can bypass the compression process if necessary. 

That way the maximum of useful information is extracted from each input. 

 

 

Figure 5. Overview of the U-Net neural network architecture6. 

  

 
6
 Source: U-Net https://arxiv.org/abs/1505.04597 

https://arxiv.org/abs/1505.04597
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